Guide: Regressionsdiagnostik – heteroskedasticitet, del 2

Detta är del två av vår genomgång av heteroskedasticitet. Om du vill veta mer om vad detta är och varför det kan innebära ett problem för din regression, gå genast tillbaka till del ett.

Läs mer

Guide: Regressionsdiagnostik – heteroskedasticitet, del 1

I detta inlägg ska vi gå igenom problem med heteroskedasticitet (och inte bara hur svårt det är att stava och uttala). Heteroskedasticitet är ett av de vanligare problemen som kan uppstå i, och försvåra tolkningen av, en regressionsanalys. Heteroskedasticitet innebär i korthet att variansen hos feltermerna inte är konstant; det vill säga att, när värdet på oberoende variabel (x) ökar, så minskar eller /ökar den oförklarade variationen i beroende variabel (y). Är spridningen jämn råder motsatsen homoskedasticitet.

Läs mer

Guide: Flernivåregressionsanalys, del 2

I den här guiden ska vi gå igenom:

  • Hur man lägger in fixerade effekter på nivå 1 och nivå 2
  • Hur man låter effekten av nivå 1-variabler variera mellan nivå 2-enheterna
  • Visualisering av varierande effekter
  • Hur man kan förklara variation i effekt

I den första delen av den här guiden undersökte vi data om priser på bostadsrätter i Göteborg. Vi fann då att det fanns signifikant variation i pris mellan olika stasdelar (nivå 2-enheterna). Nu ska vi undersöka om nivå 1-variabler, alltså egenskaper för varje enskild lägenhet, kan påverka priset, om stadsdelsegenskaper kan påverka priset, och slutligen om nivå 1-egenskaperna varierar mellan stadsdelarna. Data för den som vill följa med kan laddas ned härifrån.

Läs mer

Läsarfråga: Instrumentvariabler

Q: Jag undrar hur det här med instrument variabler fungerar?

A: Instrumentvariabler använder man när det finns risk för omvänd kausalitet. Ett klassiskt exempel är ekonomisk tillväxt och inbördeskrig. Man vill undersöka om ekonomisk tillväxt minskar risken för inbördeskrig, men det är också rimligt att tro att inbördeskrig minskar den ekonomiska tillväxten. Om vi då undersöker korrelationen mellan de två kommer vi inte veta vad som orsakar vad.

Genom att hitta en variabel som kan tänkas orsaka ekonomisk tillväxt men inte inbördeskrig kan vi komma runt problemet. I länder där ekonomin bygger på jordbruk borde rimligtvis mängden regn påverka den ekonomiska tillväxten. Samtidigt så borde inte regn påverka risken för inbördeskrig, och inbördeskrig påverkar definitivt inte hur mycket det regnar.

Om vi då hittar ett samband mellan hur mycket det regnar i ett land och risken för inbördeskrig så kan man då dra slutsatsen att det måste vara så att regnet har gjort att den ekonomiska tillväxten ökat, vilket minskat risken för inbördeskrig. Det kan ju inet ha gått åt andra hållet.

Det här exemplet kan man läsa om i en berömd artikel av Miguel, Satyanath & Sergenti (2004) i tidskriften Journal of Political Economy: Economic Shocks and Civil Conflict: An Instrumental Variables Approach.

Statistiskt gör man det här I två steg. Först undersöker man effekten av regn på ekonomisk tillväxt. Därefter använder man regnnivån för att predicera värden av ekonomisk tillväxt. Därefter använder man de predicerade värdena av ekonomisk tillväxt som oberoende variabel i en ny regression där inbördeskrig är den beroende variabeln. Detta kallas Two Stage Least Squares. I SPSS hittar du det under ”Analyze->Regression->2-Stage Least Squares”. Du skriver där in din beroende variabel, din oberoende variabel och din instrumentvariabel (motsvarande regn).

Guide: Tolka standardfel i regressionsanalys

I tidigare inlägg om regressionsanalys har jag beskrivit hur man ska tolka signifikansvärden för att se om regressionskoefficienten är signifikant skild från noll, det vill säga huruvida vi kan vara säkra på om det finns en effekt eller inte.

I det här inlägget tänkte jag beskriva hur man kan tolka regressionskoefficienternas standardfel för att avgöra om en koefficient är signifikant eller inte, och hur man också enkelt kan testa om koefficienten är signifikant skild från något annat tal än noll.

Läs mer