Läsarfråga: Jämföra medelvärden på två variabler

Q: Jag skulle vilja jämföra om två variabler (scale-nivå) är signifikant olika från varandra, det handlar om en grupp, ett tillfälle, två variabler. Jag undrar dels hur man gör detta med normalfördelade variabler och dels med icke normalfördelade variabler.

A: För normalfördelade variabler ska du då använda dig av ett så kallat ”Paired samples t-test”. Du hittar det under ”Analyze->Compare means->Paired samples t-test”. Du klickar där bara i de två variabler du vill jämföra. SPSS tar sedan fram medelvärdet på dessa båda variabler och undersöker om skillnaden i medelvärde är signifikant skilt från 0, det vill säga om vi kan säga att det finns en signifikant skillnad mellan grupperna.

Det intressanta att titta på är alltså medelvärdena i den första tabellen du får ut ”Paired samples statistics”, kolumnen ”Mean”. För att se om de är signifikant åtskilda kollar du i tabellen ”Paired samples test”, kolumnen ”Sig. (2-tailed)”. Om signifikansvärdet understiger .05 så är medelvärdena olika på 95 procents säkerhetsnivå.

Variablerna måste dock vara normalfördelade, och bör ju rimligtvis också vara mätta på samma skala. Om du jämför en variabel som kan ha värdena 0-5 och en annan som kan ha värdena 0-50 så är det inte så konstigt om medelvärdena är olika.

Om data inte är normalfördelade behöver du använda dig av något icke-parametriskt test. Icke-parametrisk statistik, måste jag erkänna, är inte min starka sida. Men vad jag förstår så skulle ”Wilcoxon Signed-Rank test” vara lämpligt. Du hittar det, och andra alternativ, under ”Analyze->Nonparametric tests->Related samples”.

Guide: Logistisk regression

I det här inlägget ska vi:

  • Gå igenom när man bör använda logistisk regression istället för linjär regression
  • Gå igenom hur man genomför en logistisk regression i SPSS
  • Tolka resultaten med hjälp av en graf över förväntad sannolikhet
  • Förstå vad B-koefficienten betyder
  • Förstå vad Exp(B), ”odds-ratiot”, betyder
  • Jämföra resultaten med OLS (linjär regression)

Läs mer